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I. INTRODUCTION

The physical entropy is a quantity that plays a key role in
the understanding of the basic laws ruling the macroscopic
behavior of systems with many degrees of freedom. We just
mention the Boltzmann’s microscopic interpretation of the
macroscopic Clausius equilibrium entropy and the celebrated
H-theoremf1g.

On the other hand the term entropy is widely used also in
contexts different from thermodynamics and statistical me-
chanics. In the information theory there is the Shannon en-
tropy f2–4g, while in dynamical systems one uses the
Kolmogorov-Sinai entropysand other entropic quantities
like, e.g., the Renyi entropiesd f4,5g.

The connection between some properties of nonequilib-
rium thermodynamical systems and the underlying chaotic
dynamics has recently attracted the interest of many scien-
tists f6–9g. The main questions are if and how the dynamical
characteristic quantitiesssuch as Lyapunov exponents or
Kolmogorov-Sinai entropyd are related to macroscopic
physical propertiesse.g., diffusion coefficients and entropy
production rated f6–15g. One can ask, for istance, if such a
kind of relation exists in the case of the Gibbs entropy varia-
tion during the transition from ascoarse-grainedd nonequilib-
rium distribution to an equilibrium one.

Some authors, on the basis of reasonable arguments and
numerical computations on simple dynamical systems, show,
in some systems, the existence of a relation between the
Kolmogorov-Sinai entropyhKS and the production raterG of
a suitably averaged coarse-grained Gibbs entropyf16g. How-
ever, the situation is not so clear and even in Ref.f16g the
possibility of different behaviors is left open.

The main goal of this work is to show that indeed a
simple relationship betweenrG andhKS does not hold in the
generic case. To this end we will study two different kinds of
discrete time systems:sad one-dimensional intermittent
maps, by intermittency we always mean that the localsin

timed Lyapunov exponent presents relevant fluctuations with
respect to its mean value; andsbd slightly coupled maps with
very differentsuncoupledd Lyapunov exponents.

We will show that when there are differentslocal
Lyapunov exponentd time scales in the different regions of
the phase space, there may be no room for an identification,
on a meaningful time interval, betweenhKS andrG. This is so
because when averagingat a fixed timethe entropy contri-
butions originating from regions with different time scales,
densities with different space scales get mixed, at possibly
different relaxation stages.

A second point we want to stress is that, even if a linearly
increasing time behavior of the coarse-grained entropy is ob-
served, the rate of growth is not necessarily given by the
Kolmogorov-Sinai invariant of the system. This will be
shown by studying discretized versions of a chaotic map
si.e., an automatond. In such a case, the memory of the cha-
otic character of the original system may allow for atran-
sientchaoticlike regime long enough to make the behavior of
the strictly periodic system indistinguishable from the one of
its truly chaotic ancestor. That is, pseudochaos is at work
f17,18g: the long-time properties of the system, such as
hKSs=0d, remain hidden and do not affect quantities, such as
rGsÞ0d, related to short-time features of the system.

The paper is organized as follows. In Sec. II we recall
some basic concepts and methods in chaotic dynamical sys-
tems and statistical mechanics. In addition we give a simple
argument for the connection betweenhKS and rG, stressing
the weak points of the argument. In Sec. III we discuss the
results of numerical computation for the time evolution of
the coarse-grained Gibbs entropy in systems with “non-
trivial” dynamical features, i.e., with intermittency and dif-
ferent characteristic times. Section IV is devoted to conclu-
sions and discussions.

II. BRIEF OVERVIEW OF BASIC FACTS

Since the pioneering work of Kolmogorovf3,5g, the rel-
evance of the Kolmogorov-Sinai entropy for a proper char-
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acterization of the behavior of a chaotic dynamical system
was clear. To perform the computation ofhKS one has to
choose a partitionA of the phase space and to assign each
cell of the partition an integer valuei. In such a way, the
trajectories of a dynamical system, with continuous states,
sampled at times separated by a time stepDt

xst0d,xst0 + Dtd,xst0 + 2Dtd, . . . ,xst0 + jDtd, . . . ,st0 + TDtd

become symbolic sequences

is0d,is1d,is2d, . . . ,is jd, . . . ,isTd s1d

whose meaning is that at timejDt, the trajectory is in the cell
labeled by is jd. Then one defines the probability of each
word sor blockd of length n, psAdsk1,k2, . . . ,knd, counting
how many times one meets the wordk1,k2, . . . ,kn along the
sequences1d. The entropy of the blocks of sizen, HsAdsnd,
thus reads

HsAdsnd = − o
k1,..,kn

psAdsk1, . . ,kndlog psAdsk1, . . ,knd. s2d

The Kolmogorov-Sinai entropy per unit of time is defined by
the “sup” over all partitions of the asymptotic value of the
rate of increase ofHsAdsnd, i.e.,

hKS= sup
A

lim
n→`

HsAdsnd
nDt

. s3d

The quantityhKS is a numerical invariant that gives a good
characterization of a chaotic system, but unfortunately it is
almost impossible to compute analyticallysexcept very few
simple casesd and also rather difficult from a numerical point
a view. From a physical point of view it is rather natural to
use regular partitions with hypercubic cells of edgee. Let us
denote withHsedsnd then-block entropy on a partition of this
kind ande entropy the limit

hsed = lim
n→`

Hsedsnd
n

= lim
n→`

Hsedsn + 1d − Hsedsnd, s4d

where we have putDt=1. It is a remarkable fact thathsed,
computed with different values ofe, can give very interest-
ing information about the properties of the systemf4,5g.
Moreover, it is possible to obtainhKS by considering the limit
e→0 in s4d instead of the sup operation ins3d. By recalling
the Shannon-McMillan equipartition theoremsstating that,
for large n, the number of “typical”n words increases as
expfhsedngd, one has thathsed gives thesasymptotic in timed
exponentially growing rate of the number of typical trajecto-
ries of the system, in the limit of high resolutionsas mea-
sured byed. It is intuitive that this growing rate must be
linked to the exponentially fast separation of nearby trajec-
tories. The Pesin theorem is the rigorous statement of this
idea: all the expanding directions contribute to the diversifi-
cation of the trajectories and to the increase of their number

hKS= o
li.0

li , s5d

wheresli .0d means the sum over positiveli. Pesin’s iden-
tity s5d provides us with a useful alternative way to compute

hKS. The Lyapunov exponents can be numerically computed
without particular difficulties, even in high-dimensional sys-
tems; on the contrary, because of the exponential prolifera-
tion of then words, the Kolmogorov-Sinai entropy becomes
rapidly unattainable by numerical methodssa part low-
dimensional systemd. Therefore, very often the Pesin formula
is basically the unique way to computehKS.

Note thathKS is an entropy rate defined on the ensemble
of the trajectories of a systemsaccording to some stationary
probability measured, even if, by means of ergodicity, it is
practically computed using only one single long trajectory.
Qualitative arguments may be givenf19g to support a con-
nection betweenhKS and the rate of variation of an entropy-
like quantity, which we call Gibbs entropy, defined on the
phase space of the system. A possible line of reasoning is the
following.

Consider a deterministic dynamical law

x → Ttx s6d

swherex is a D-dimensional vectord and a probability den-
sity rsx ,td, which gives a distribution of states of the system
throughout its phase space at a timet. We define the Gibbs
entropy ofr as follows:

Ssrtd = −E rsx,tdlnfrsx,tdgdx, s7d

i.e., its conditional entropy with respect to a uniform density.
For chaotic dissipative systems, wherersx ,td tends to a sin-
gular sfractald measure, definitions7d becomes meaningless.
Nevertheless, following a nice idea of Ruellef20g, one can
avoid this difficulty simply by addingsor considering un-
avoidably presentd a small noise term in the evolution law. In
such a way one obtains arsx ,td continuous with respect to
the Lebesgue measure. IfJsx ,td is the Jacobian ofs6d, then a
straightforward computation gives

Ssrtd = Ssr0d +E rsx,tdlnuJsx,tdudx. s8d

In the case of volume-conserving evolutions, one hasSsrtd
=Ssr0d. To allow for an entropy variation one needs a coarse
graining. Let us consider a hypercubic partition, as intro-
duced above, and define the probabilityPesi ,td to find the
state of the system in the celli at time t,

Pesi,td =E
Li

e
rsx,tddx, s9d

where Li
e is the region singled out by theith cell. Let us

introduce thee-coarse-grained Gibbs entropy

SesPtd = − o
i

Pesi,tdln Pesi,td.

If e is small enough thenSsrtd andSesPtd are trivially related,

SesPtd . Ssrtd + D lnS1

e
D .

If one considers a distribution of initial conditions that is
different from zero only over onesor very fewd cellssd, then
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one has, fore small enough and a time not too short,

SesPtd = SesP0d + hKSt. s10d

To obtain Eq.s10d one can argue as follows. Assume that the
system hasm-positive Lyapunov exponents and thatrsx ,0d
is localized aroundxcs0d. In a suitable reference system
swith the axes along the eigendirections of the Lyapunov
exponentsd, if rsx ,0d has a Gaussian shape, for some times
rsx ,td is still well approximated by a Gaussian with vari-
ances

s j
2std = s j

2s0dexph2l jtj; s11d

therefore,

rsx,td . p
j=1

D
1

Î2ps j
2std

e−hfxj − xj
cstdg2/2s j

2stdj, s12d

wherexcstd is the state evolved fromxcs0d. From this, in the
nongrained case, one gets

Ssrtd = Ssr0d + o
j

ln
s jstd
s js0d

= Ssr0d + o
j=1

D

l jt.

It is clear thatSsrtd=Ssr0d if the phase-space volume is con-
served. Considering now the coarse grainings9d, one has that
along the directions of the negative Lyapunov exponents
sm+1,m+2, . . .d, for a long-enought

skstd , sks0de−ulkut ø e.

This implies that

Pi
estd . p

j=1

m
1

Î2ps j
2std

e−hfxj
sid − xj

cstdg2/2s j
2stdj,

and, therefore,

SesPtd = SesP0d + o
j=1

m

l jt.

With the aid of the Pesin’s formulas5d, Eq. s10d follows. Let
us stress that the transition froms8d–s10d is allowed by the
fact that, in the presence of a coarse graining, the contracting
eigendirectionsscorresponding to the negative values of the
Lyapunov exponentsd cannot balance the effects of the ex-
panding ones.

At this point we have to note that, by definition, the Gibbs
entropys7d explicitly depends on the particular chosen initial
density. In the discussion here above this dependence may be
labeled by the cellxc, where the distribution is initially dif-
ferent from zero. On the contrary,hKS is an asymptotic global
property of the system. Thus, one may expect that a density-
independent behavior, as ins10d, can be found only in
“friendly” dynamical systems, i.e., systems with no fluctua-
tions. A generic system possesses a certain degree of inter-
mittency, so that, for instance, the expanding and contracting
properties may strongly depend on the phase-space region
the trajectory is visiting. This calls for an averaging over the
initial condition xc, weighted, say, by the natural invariant
measure of the system

Ssrtd → Sstd =E Sstuxcdreqsxcddxc, s13d

where Sst uxcd is Ssrtd with r0sxd localized aroundxc. The
same averaging procedure leads toSestd from SesPtd. This
operation yields intrinsic quantities, which can depend on
global properties of the system. The interesting question is
whether the simple relations10d survives, as an observable
property, for the averaged coarse-grained entropy. Note that
Eq. s10d, besides its conceptual interest, would result in a
numerically simple way to determinehKS. In some systems
suitable ranges oft ande exist where the relation is verified
f16g. However, we believe, in agreement with Ref.f15g, that
what has been found in Ref.f16g is just a lucky coincidence.
With regard to that, it is important to stress that in the above
presented arguments, for the derivation ofs10d, there aresat
leastd two delicate points:sad both Lyapunov exponents and
Kolmogorov-Sinai entropy are quantities defined in the lim-
its of high resolutionse→0d and long timesst→`d, andsbd
a behavior likes11d holds only forshort time i.e.,

t &
1

l1
ln

1

ss0d
,

and this is so also for the linear behavior ins10d, which is
expected to be valid for

t &
1

l1
ln

1

e
.

If intermittency is present one has to replacel1 with the
largest local Lyapunov exponent.

Since for a coarse-grained Gibbs entropy a finitee is man-
datory, it is not obvious that the previous time regimessad
and sbd snoted aboved have a nonempty overlap. One may
note that in the entropic analysis of then words, one of the
two asymptotic limits can be relaxed, i.e., one can work with
noninfinitesimale and therefore obtain thee entropy hsed,
which is an asymptotic in time quantity associated with a
finite tolerancee. However, once the size of the cells for the
coarse-grained Gibbs entropy is fixed, nonetheless,rsx,td
evolves developing structures on scaleslstd<e expsltd in-
creasing in time. Therefore, it is not trivial at all that a simple
relation betweendSestd /dt andhsed exists.

III. A NUMERICAL STUDY OF SIMPLE DYNAMICAL
SYSTEMS

In this section we present an entropic analysis of simple
dynamical systems that show, in spite of their low dimen-
sionality, interesting features.

From a practical point of view the computation ofSestd is
performed as follows:

sid We select several starting conditionsx1
j s0d, x2

j s0d , . . .,
xN

j s0d all located in thej th box of sizeeD.
sii d We let evolve all theN@1 starting conditions up to a

time t obtainingx1
j std, x2

j std , . . ., xN
j std.

siii d We calculate
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pe,jsk,td =
1

N
o
i=1

N

dsxi
jstd,kd

with

dsx,kd = H1 if x P Lk
«

0 otherwise.
h

sivd We compute the entropy ofpe,jsk,td defined as

Ses j ,td = − o
k

pe,jsk,tdlog pe,jsk,td. s14d

svd We average this quantity on the coarse-grained invari-
ant distributionpeqs jd obtained fromreqsxd with the proce-
dure of Eq.s9d. Thus, we have

Sestd = o
j

peqs jdSes j ,td. s15d

A. Intermittent map

A recent paperf15g shows that the value ofrG in the
Manneville mapf21g significantly differs from the value of
hKS. These authors perform the analytical calculation ofSstd
starting from only one particular condition, namely, the box
containing the pointx=0, which, in the Manneville map, is
the point with the lowest local Lyapunov exponent. Since in
this map the value of the local Lyapunov exponent ranges
from very low valuesflsxd→0 for x→0g to values consid-
erably greater than 1, the authors correctly argue that the
discrepancy is due to the variability oflsxd. Nevertheless the
authors off15g do not perform the final average over the
initial condition. In the following we see that the averaging
procedures15d is not able to recover the condition of Eq.
s10d, neither in the Manneville map nor in a less-intermittent
map. Let us start with a simple case, i.e., the modified tent
map given byf22g

xt+1 = H xt/p if xt , p

s1 − xtd/s1 − pd if p , xt , 1.
h s16d

This map is the usual tent map ifp= 1
2, while for small values

of p one has an intermittent behavior characterized by two
very different local Lyapunov exponents, namely,

l+ = − log p, l− = − logs1 − pd. s17d

The stationary distribution is constant between 0 and 1 and,
consequently, we have

hKS= pl+ + s1 − pdl− = − p log p − s1 − pdlogs1 − pd,

s18d

assuming its maximum value forp= 1
2 and decreasing its

value for p→0. Note that this map presents an intermittent
behavior, but not in a critical way, like in the Manneville
map, and the distribution of the length of the “laminar” zones
sthe permanence in the zonefp,1gd is simply exponential
without power-law tail. Nevertheless, we see that already in
this system Eq.s10d does not hold.

The numerical results are shown in Fig. 1. We sete
=10−3 and scale the time axes with the inverse ofhKSspd,
given by Eq.s18d. Thus, if Eq.s10d holds, then we should
observe that all the curves, with differentp, collapse on the
straight lineSestd=hKSspdt. As one can see, the agreement is
good only forp= 1

2 swith no intermittencyd, while it becomes
worse and worse with a decreasingp. The main point is that
the linear behavior ofSestd should hold, according to the
heuristic arguments of Ref.f16g, till to a time given by

tlin .
1

l1
logS1

e
D s19d

corresponding, on the scaled time of Fig. 1, to the value
−log e.7. This is observed forp= 1

2 but for small values of
p one has thatSestd increases in time with a “wrong” slope
sdifferent fromhKSd and later it exhibits a rather long cross-
over.

The origin of this effect is in the intermittent behavior of
the system. Indeed the realizationsSes j ,td starting in the
zonef0,pg are spread on the whole intervalf0,1g after few
steps almost reaching the asymptotic value of −loge while
the realizations starting, for example, near the unstable equi-
librium point x=1/s2−pd takes several time steps to reach
the saturation, giving a dominant contribution to the rate of
increase ofSestd. In this way theSestd computed with Eq.
s15d does not increase in time following the naive argument
yielding to Eq.s10d. The reason of the discontinuity inSes1d
for p→ 1

2 is explained in the Appendix.
Figure 2 shows other interesting properties of the behav-

ior of Sestd for p=0.1 andp=0.4 at varying the value ofe. As
one can see, in the slightly intermittent casep=0.4 the res-
caled curves collapse together confirming the assumption of
Eq. s10d; while in the intermittent casep=0.1 the curves do
not collapse and, only for very low values ofe, a linear
growth of Sestd is present. Let us stress the fact that, at vari-
ance with the case shown in Fig. 2sbd, in the intermittent case
fFig. 2sadg, the crossover regimesafter the linear one and
before the saturationd is very long and comparable to the
duration of the linear regime.

To connect our results to the ones of Ref.f15g we also
perform the same calculation for the Manneville map given
by

FIG. 1. Sestd as a function ofthKSspd for the modified tent map
of Eq. s16d with e=10−3 and different values ofp. Note that Eq.
s10d should give the straight linethKSspd for all values ofp.
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xt+1 = H xt + kxt
z if xt , d

s1 − xtd/s1 − dd if d , xt , 1,
h s20d

whered fulfills

d + kdz = 1.

We perform the numerical calculations in the range3
2 ,z

,2 andk,1 where an invariant distribution existsf4,15g. In
this case, even if the local Lyapunov exponentlsxd vanishes
for x=0, we select the parameters in order to haveklsxdl
=hKS.0 sk…l stands for the average over the invariant dis-
tributiond. When z.

3
2 the distribution of the permanence

time t in the rangef0,dg has a power-law tail withktl,`

while kt2l diverges. The only difference from the tent-map
calculation is that the invariant distributionreqsxd is not con-
stant, and, therefore, we have to compute it numerically. As
shown in Fig. 3, also in this case we observe a “wrong” slope
slower thanhKSd of Sstd and a very long crossover range.

B. 2D map

Let us now discuss a system with two different time
scales. We choose the following 2D maps for the variablext
andyt:

Hxt+1 = fsxtd + s cosf2psxt + ytdgmod 1

yt+1 = ryt + s cosf2psxt + ytdgmod 1
h s21d

with

fsxd = Hx/p if x , p

s1 − xd/s1 − pd if p , x , 1,
J s22d

andr is an integer greater than 1. The map forxt is a modi-
fied tent map, like in Sec. III A, while the map foryt is a
generalized Bernoulli shift. We choosep=0.3 andr =5 in
order to have two largely different uncoupled Lyapunov ex-
ponents, namely,lx.0.61 andly=log 5.1.61. We use this
kind of coupling to avoid discontinuity atx=0 or x=1.

We will see that in this system the two Lyapunov expo-
nentslx andly have a role rather similar to that ofl+ andl−
for the systems16d.

The coarse-grained Gibbs entropy of this 2D map is cal-
culated starting from a 2D cell of linear sizee and perform-
ing the average over the 2D coarse-grained invariant distri-
bution, which turns out to be almost flat in the slightly
coupled cases!1. We numerically check that even for the
maximum value used,s=0.1, the deviation from a flat equi-
librium distribution is negligible. We also numerically calcu-
lated the Lyapunov exponents in the coupled case; for the
small values ofs used, we observe no relevant changes from
the uncoupled case. We sete=5310−3 and study the behav-
ior of Sestd with different values ofs in such a way that we
can study the crossover behavior at varyings. The results
are shown in Fig. 4.

As one can see, at very smallt, Sestd increases with a
slope equal to the Kolmogorov-Sinai entropyhKS.lx+ly
=−p log p−s1−pdlogs1−pd+log r. After that the phase
space of the variabley saturates and the slope changes. The

FIG. 2. Sestd /Ses`d as a function oft /Ses`d for the modified tent
map of Eq.s16d with different values ofe. In sad p=0.1 and insbd
p=0.4.

FIG. 3. Sestd as a function oft for the Manneville map of Eq.
s20d for z=1.8 andk=0.2. The value of the slope of the straight line
is hKS as numerically calculated for the same values of parameters.

FIG. 4. Sestd as a function oft for the 2D map of Eq.s21d with
different values ofs, e=5310−3, p=0.3, andr =5.
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time of the change in the slope is the saturation time of the
corresponding 1D systems, namely,tlin <1/lylogs1/ed as in
Eq. s19d. In the cases,e the influence of the coupling is
almost negligible and the second slope is the same, as we
observe in the 1D case. In other words, as shown in the
figure, we haveSestd.Sy

es`d+Sx
estd, whereSx

estd is the en-
tropy calculated from the marginal probability density
rxsx,td=edyrsx,y,td. In a similar waySy

estd is obtained from
rysy,td=edxrsx,y,td.

Whens<e the noise on the slowest variablex is enough
to spread the distribution as fast as it happens for the variable
y so no change in slope is observed.

Thus, we observe that for values ofs.e, rG corresponds
quite well to the value ofhKS in a broad time interval while
for valuess!e this correspondence longs only for a very
short time. This is noteworthy because this map has prati-
cally the samehKS entropy at the different values ofs used
ffor s=0 hKS=−p logspd−s1−pdlogs1−pd+logsrd=2.22
while for s=0.1 we numerically obtainhKS=2.19g, but with
values ofs.e we haverG<hKS while for s,e the equiva-
lence is lost or longs for a very short time.

It is interesting to compare Fig. 4 with Fig. 2sad. In both
cases the “naive” behaviorfi.e.,Sestd−Ses0d=hKStg may have
a very short duration, and there is a long crossover. The
origin of this crossover is due to a sort of “contamination
effect” of different timessin other words, different mecha-
nismsd involved. For the systems16d this is due to intermit-
tencysthe system “feels”l+ andl−d while for the 2D map it
is due to the existence of different times that are relevant at
different spatial resolution scales.

In systems with many degrees of freedom the “contami-
nation effect” can produce rather impressive behaviors. As
an example we can cite the case of fully developed turbu-
lence where, because of the existence of many different char-
acteristic times, the growth of the distance between two tra-
jectories is a power law in time instead of an exponential
salthough the system is chaoticd f23g.

C. Discretized 1D map

We now discuss a class of dynamical system with zero
hKS: the discretized maps also called deterministic automata
f24g. We study the discretizedsin the phase-spaced version of
the 1D the map defined by the equation

nt+1 = hb fsntd
h

c, s23d

whereh is the discretization parametersthe number of dis-
cretized state is 1/hd, b.c denotes the integer part andfsxd is a
tent map

fsxd = Hx/p if x , p

s1 − xd/s1 − pd if p , x , 1.
J s24d

Even if this system is the discretized version of a chaotic
map, the finiteness of the available states forces the dynam-
ics to be periodic. In Ref.f24g it has been observed that the
block entropyHesnd defined in Eq.s2d with e@h si.e., sev-
eral discrete states in each celld for small values ofn in-

creases with a slope given by the Kolmogorov entropyhKS of
the corresponding continuous systemxt+1= fsxtd, while for

n * tp . −
1

hKS
log h s25d

the block entropy stops increasing, thus, revealing the peri-
odic nature of the dynamics. We present the behavior ofSestd
in this system, varying the value ofp in order to observe also
the effect of intermittency. As Fig. 5 shows, for the higher
values ofp the coarse-grained Gibbs entropy increases as a
function of the scaled timethKSspd with a slope comparable
to 1, while it reaches the saturation values at a scaled time
given approximatively by

tsat.
1

hKS
logS1

e
D < 7.

Note that, in spite of the fact that the KS entropy ofs23d is
strictly zero, this behavior is practically the same as the con-
tinuous system, revealing one of the main problem of the use
of the coarse-grained Gibbs entropy to detecthKS. Indeed the
block entropyHesnd feels that the system is periodic only for
n. tp, but

hKStp . − log h . − log e. s26d

The last inequality follows from the physical condition we
use, i.e., thate@h in order to have several states inside each
cell. The main point is that becausee@h,

tp .
1

hKS
logs1/hd,

is larger than the saturation timetsat. Therefore, the coarse-
grained Gibbs’ entropy saturates well before the system feels
to be periodic.

IV. CONCLUSIONS

We have shown that, in spite of some folklore, there is a
rather loose relation between the Kolmogorov-Sinai entropy
and the growth of the coarse-grainedsGibbs-liked entropy.
Such a claimed connection exists only in very special cases,
namely, systems with a unique characteristic time and very
weak intermittencysi.e., small fluctuations of the local
Lyapunov exponentd. On the contrary, in more interesting

FIG. 5. Sestd as a function ofthKSspd for the discretized 1D map
of Eq. s23d with different values ofp, e=10−3, and 1/h=33106.
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sand closer to realityd systems, with multiple characteristic
times and/or nonnegligible intermittency, the relation be-
tweenhKS and rG holds sif anyd only for a very short time.

The main reason for this is due to the asymptotic nature of
hKS sas well as thee entropyd, i.e., its relevance at very large
time intervals. On the contrary, the growth of the coarse-
grained entropy only involves short time intervals, and, dur-
ing the early time evolution ofSestd one has entanglement of
behaviors at different characteristic space scales.

This phenomenon is rather similar to that observed in the
spreading of passive tracers in closed basinsf25g. In such a
case, if the characteristic length scale of the Eulerian veloci-
ties is not very small, compared with the size of the basin,
both the diffusion coefficient and the Lyapunov exponent do
not give relevant information about the mechanism of
spreading.

Our loose-relation result refers to short time behavior. In
the opposite limit Collet and Eckmannf26g find a result of
the same kind: in intermittent hyperbolic dynamical systems,
the decay rate of time correlations is never faster than what is
dictated by the smallest positive Lyapunov exponentsthat, in
the one-dimensional case, reduces tohKSd.

We stress again that the failure of the relation betweenhKS
andrG is due to the fact that the growth of the coarse-grained
entropy is not related to asymptotic propertiessi.e., long
times and small resolutiond. This is particularly evident in
deterministic discrete states systems that, although noncha-
otic si.e., with hKS=0d, show a behavior ofSestd very similar
to that observed in genuine chaotic systemsswith hKSÞ0d.

From all that one can safely conclude, in intermittent sys-
tems there exist different characteristic timesse.g., the in-
verse of Lyapunov exponent, the correlation time, andrG

−1d,
with no simple relation among them.
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APPENDIX

We discuss here the discontinuity inSes1d for pÞ 1
2 ob-

served in Fig. 1. Indeed forp= 1
2 we haveSes1d=log 2 while

for p= 1
2 −j, with j!1, we haveSes1d.0.85. Obviously

Ses0d=0 for all values ofp. To understand the reason of this

discontinuity let us compute the value ofSes1d. If we start
from the j th cell we have

pe,jsk,0d = dk,j .

If p= 1
2 at time 1, then this cell will be spread over exactly

two cells and the trajectory starting at the border of a cell
will go exactly on the border of another cell, thus, if, for the
sake of simplicity,j ,

1
2e si.e., if the cell is in the regionx

,
1
2d, we obtain

pe,jsk,1d = 1
2sdk,2j + dk,2j+1d,

leading toSes1d=log 2 for eachj . If we havep= 1
2 −j with

j!1, then the size of the phase-space region populated after
one time step is essentially the same. Nevertheless, this time
the trajectory starting at the border of a cell does not always
go to another cell border. Therefore, in the averaging proce-
dure of Eq.s15d there will be some starting conditions giving
approximately a superposition of the cell borders after one
time stepsfor examplei =0d and, consequently, a value of
Ses1d< log 2, but also some starting conditionsj , resulting in

pe,jsk,1d . 1
2dk,2j+1 + 1

4sdk,2j + dk,2j+2d.

These terms give a contribution to the average greater than
logarithm 2 and lead to the discontinuity of Fig. 1 when
going from p= 1

2 to pÞ 1
2. Anyway this behavior is not im-

portant for greater values of time, therefore, it does not in-
fluence the behavior ofSestd for t.1.

In order to check our numerical results we also compute
Sestd from rsx,td obtained by the Perron-Frobenius equation.
In the case of the tent map, we use directly the expression of
the formal evolution ofrsx,td, given by

rsx,t + 1d = prspx,td + s1 − pdrf1 − xs1 − pd,tg,

implemented in a recursive algorithm on a computer pro-
gram. We fix

rsx,0d = H1/e if x P Lk
e

0 otherwise,
J

let rsx,td evolve, and then we computeSestd. The results
obtained with this method are in perfect agreement with
those in Sec. III and confirm the presence of the dis-
continuity.
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