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We discuss the connection between the Kolmogorov-Sinai enthpgyand the production rate of the
coarse-grained Gibbs entropy. Detailed numerical computations show that {b&en-acceptedidentifica-
tion of the two quantities does not hold in systems with intermittent behavior and/or very different character-
istic times and in systems presenting pseudochaos. The basic reason for this is in the asywifitotspect
to time) nature ofhkg, while rg is a quantity related to short-time features of a system.
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I. INTRODUCTION time) Lyapunov exponent presents relevant fluctuations with
respect to its mean value; afi slightly coupled maps with
The physical entropy is a quantity that plays a key role invery different(uncoupled Lyapunov exponents.
the understanding of the basic laws ruling the macroscopic We will show that when there are differerlocal
behavior of systems with many degrees of freedom. We justyapunov exponenttime scales in the different regions of
mention the Boltzmann's microscopic interpretation of thethe phase space, there may be no room for an identification,
macroscopic Clausius equilibrium entropy and the celebrate@n @ meaningful time interval, betweéps andrg. This is so
H-theorem[1]. beqause vyh'en gveragirag a _fixed ti_methe entropy contri-
On the other hand the term entropy is widely used also iPutions originating from regions with different time scales,

contexts different from thermodynamics and statistical medensities with different space scales get mixed, at possibly
chanics. In the information theory there is the Shannon endifférent relaxation stages. . .
A second point we want to stress is that, even if a linearly

tropy [2-4], while in dynamical systems one uses the. S X ; .
Kolmogorov-Sinai entropy(and other entropic quantities increasing time behavior of t_he coarse-gramed entropy Is ob-
like, e.g., the Renyi entropigé4,5). served, the rate _of_ groyvth is not necessarily g!ven.by the
The connection between some properties of nonequ”ibKoImogorov—Sma_u Invariant of the system. This W-'” be
. . . ~shown by studying discretized versions of a chaotic map
fium thermodynammal systems and .the underlying Cha(,)t'(fi.e., an automaton In such a case, the memory of the cha-
dynamics has recently attracted the interest of many scienyiic character of the original system may allow fotran-
tists[6-9]. The main questions are if and how the dynamicalgjentchaoticlike regime long enough to make the behavior of
characteristic quantitiegsuch as Lyapunov exponents or the strictly periodic system indistinguishable from the one of
Kolmogorov-Sinai entropy are related to macroscopic its truly chaotic ancestor. That is, pseudochaos is at work
physical propertiese.g., diffusion coefficients and entropy [17,18: the long-time properties of the system, such as
production ratg[6-15. One can ask, for istance, if such a h.4=0), remain hidden and do not affect quantities, such as
kind of relation exists in the case of the Gibbs entropy variar(+0), related to short-time features of the system.
tion during the transition from &coarse-graingchonequilib- The paper is organized as follows. In Sec. Il we recall
rium distribution to an equilibrium one. some basic concepts and methods in chaotic dynamical sys-
Some authors, on the basis of reasonable arguments argins and statistical mechanics. In addition we give a simple
numerical computations on simple dynamical systems, shovargument for the connection betwebgs andrg, stressing
in some systems, the existence of a relation between thise weak points of the argument. In Sec. Il we discuss the
Kolmogorov-Sinai entropyis and the production ratg; of ~ results of numerical computation for the time evolution of
a suitably averaged coarse-grained Gibbs entfapy How-  the coarse-grained Gibbs entropy in systems with “non-
ever, the situation is not so clear and even in R&€] the trivial” dynamical features, i.e., with intermittency and dif-
possibility of different behaviors is left open. ferent characteristic times. Section IV is devoted to conclu-
The main goal of this work is to show that indeed asions and discussions.
simple relationship betweer; andhyg does not hold in the
generic case. To this end we will study two different kinds of
discrete time systemsfa) one-dimensional intermittent Since the pioneering work of Kolmogord®,5], the rel-
maps, by intermittency we always mean that the Idoal evance of the Kolmogorov-Sinai entropy for a proper char-

Il. BRIEF OVERVIEW OF BASIC FACTS
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acterization of the behavior of a chaotic dynamical systenhgs. The Lyapunov exponents can be numerically computed
was clear. To perform the computation bfs one has to without particular difficulties, even in high-dimensional sys-
choose a partitiond of the phase space and to assign eacliems; on the contrary, because of the exponential prolifera-
cell of the partition an integer value In such a way, the tion of then words, the Kolmogorov-Sinai entropy becomes
trajectories of a dynamical system, with continuous states;apidly unattainable by numerical methoda part low-
sampled at times separated by a time siép dimensional systeinTherefore, very often the Pesin formula

i is basically the unique way to computgs,
X(to) X(to + At X(to + 2A1), ... X(to+]AD), ... (o + TAY) Note thathys is an entropy rate defined on the ensemble

become symbolic sequences of the trajectories of a systefaccording to some stationary
o o _ probability measurg even if, by means of ergodicity, it is
1(0),i(2),i(2), ....J(j), ...,i(T) (1) practically computed using only one single long trajectory.

Qualitative arguments may be givéh9] to support a con-

h nection betweeig and the rate of variation of an entropy-
like quantity, which we call Gibbs entropy, defined on the
phase space of the system. A possible line of reasoning is the

whose meaning is that at tinjat, the trajectory is in the cell
labeled byi(j). Then one defines the probability of eac
word (or block of length n, p“A(ky, ks, ... k,), counting
how many times one meets the wdedks, ... |k, along the

. following.
(4)
sequencel). The entropy of the blocks of size H(n), Consider a deterministic dynamical law
thus reads
“A) S p ) X T ®
HYY(n) = - ki, . . kylo Ky, . . k). (2 ) . . .
" kl,_,,knp (ks iog Pk o (2 (wherex is a D-dimensional vectgrand a probability den-

o ) o ) sity p(x,t), which gives a distribution of states of the system
The Kolmogorov-Sinai entropy per unit of time is defined bythroughout its phase space at a timaVe define the Gibbs
the “sup” over all partitions of the asymptotic value of the entropy ofp as follows:

rate of increase ofl‘*)(n), i.e.,

. HYW(n) Sm=—fpunmwunwn (7)
hgs=suplim ——. (3)
A noew  NAt
i.e., its conditional entropy with respect to a uniform density.

The quantityhys is a numerical invariant that gives a good For chaotic dissipative systems, wheie,t) tends to a sin-
characterization of a chaotic system, but unfortunately it isyylar (fracta) measure, definitiori7) becomes meaningless.
almost impossible to compute analyticallgxcept very few  Nevertheless, following a nice idea of Ruel0], one can
simple casesand also rather difficult from a numerical point 4yoid this difficulty simply by addingor considering un-
a view. From a physical point of view it is rather natural to gyoigably presenta small noise term in the evolution law. In
use regular partitions with hypercubic cells of edgéetus  gych a way one obtains @x,t) continuous with respect to
denote withH?(n) the n-block entropy on a partition of this e Lebesgue measure.Jix, t) is the Jacobian of6), then a

kind ande entropy the limit straightforward computation gives
- HYMY) o
h(e)= lim == = lim H¥(n+1) ~H<n), (4 o) = Spo) + f p(x,DINI(x,D]dx. ®
where we have pust=1. It is a remarkable fact thdt(e),  |n the case of volume-conserving evolutions, one 8as)

computed with different values af, can give very interest- =g(y ). To allow for an entropy variation one needs a coarse
ing information about the properties of the syst¢MS].  graining. Let us consider a hypercubic partition, as intro-
Moreover, it is possible to obtains by considering the limit  qyced above, and define the probabilR§(i,t) to find the

e—0in (4 instead_of the sup operation {8). By r_ecalling state of the system in the célat timet,
the Shannon-McMillan equipartition theorefstating that,

for large n, the number of “typical’n words increases as et

exd h(e)n]), one has thal(e) gives the(asymptotic in timg P = A€ p(x.Hdx, ©)
exponentially growing rate of the number of typical trajecto- _ _ _ ' _

ries of the system, in the limit of high resolutidas mea- Where A is the region singled out by thih cell. Let us
sured bye). It is intuitive that this growing rate must be introduce thee-coarse-grained Gibbs entropy

linked to the exponentially fast separation of nearby trajec- _ o o

tories. The Pesin theorem is the rigorous statement of this S(Py = _2 P<(,0In P<i.1).

idea: all the expanding directions contribute to the diversifi-

cation of the trajectories and to the increase of their numbelf € is small enough the8(p,) andS*(P,) are trivially related,

hes= 2 N, ©) S(P) = S(p) +D In( 1).

A>0 €

where(\;>0) means the sum over positivg. Pesin’s iden-  |f one considers a distribution of initial conditions that is
tity (5) provides us with a useful alternative way to computedifferent from zero only over onéor very few cell(s), then
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one has, fore small enough and a time not too short,
S(Py) = ST(Po) + hyet. (10)

To obtain Eq(10) one can argue as follows. Assume that thewhere S(t|x) is S(p,) with py(x) localized aroundk.. The
system hasn-positive Lyapunov exponents and thek,0)  same averaging procedure leadsSit) from S<(P,). This
is localized aroundx“(0). In a suitable reference system gperation yields intrinsic quantities, which can depend on
(with the axes along the eigendirections of the Lyapunowjlobal properties of the system. The interesting question is
exponents if p(x,0) has a Gaussian shape, for some timesyhether the simple relatiofiL0) survives, as an observable
p(x,t) is still well approximated by a Gaussian with vari- property, for the averaged coarse-grained entropy. Note that
ances Eq. (10), besides its conceptual interest, would result in a
) numerically simple way to determirfgs In some systems
o}(0) = oj(0)exp2nth; 1D suitable ranges df and e exist where the relation is verified
therefore, [16]. However, we believe, in agreement with Relf5], that
what has been found in RgfL6] is just a lucky coincidence.

Slp) — S(t) = f S(t|X%) ped X)X, (13

D
1 C\ 12002 With regard to that, it is important to stress that in the above
pxt) = H m e (b =0 H2o 0, (12) presentged arguments, for t%e derivationDd), there ardat
=1 N e leas) two delicate points(a) both Lyapunov exponents and
wherex®(t) is the state evolved from®(0). From this, in the = Kolmogorov-Sinai entropy are quantities defined in the lim-
nongrained case, one gets its of high resolutione— 0) and long timegt— <), and(b)
D a behavior like(11) holds only forshorttime i.e.,
Sip) = S0 + S n I =g+ St L
;00 =1 t<=In—

A 0)’
It is clear thatS(p,) =S(py) if the phase-space volume is con- 1 00

served. Considering now the coarse graini@gone has that and this is so also for the linear behavior (&0), which is
along the directions of the negative Lyapunov exponentgxpected to be valid for
(m+1,m+2,...), for a long-enough

olt) ~ a0 M < ¢, t= 1l
)\l €
This implies that
m If intermittency is present one has to replace with the
pt) = [ 1 o5 - 122070} largest local Lyapunov exponent.
: -1 \,rsz(t) ' Since for a coarse-grained Gibbs entropy a fieite man-
datory, it is not obvious that the previous time regintas
and, therefore, and (b) (noted abovehave a nonempty overlap. One may
m note that in the entropic analysis of thewords, one of the
S(P) = S(Py) + D) At two asymptotic limits can be relaxed, i.e., one can work with
t [0) jee s . .
=1 noninfinitesimale and therefore obtain the entropyh(e),

. . - which is an asymptotic in time quantity associated with a
With the aid of the Pesin's formul®), Eq. (10) follows. Let finite tolerancee. However, once the size of the cells for the

us stress_that the transition frof@—(10) is gllowed by the _coarse-grained Gibbs entropy is fixed, nonethelggs,t)
fact that, in the presence of a coarse graining, the contractmgvolves developing structures on scalé§~ e exp(At) in-
eigendirectiongcorresponding to the negative values of the R o = .
Lyapunov exponenjscannot balance the effects of the ex- fé?;%ggb'g&rgsﬂg}%rfé?fﬁétr:? glc:)(tig\t/éal atallthata simple
panding ones. € :
At this point we have to note that, by definition, the Gibbs

entropy(7) explicitly depends on the particular chosen initial  Ill. A NUMERICAL STUDY OF SIMPLE DYNAMICAL

density. In the discussion here above this dependence may be SYSTEMS

labeled by the celk®, where the distribution is initially dif- , i ) i .
ferent from zero. On the contraty,sis an asymptotic global In this section we present an entropic analysis of simple

property of the system. Thus, one may expect that a densitylynamical systems that show, in spite of their low dimen-
independent behavior, as ifl0), can be found only in Sionality, interesting features. _ _
“friendly” dynamical systems, i.e., systems with no fluctua- From a practical point of view the computation$tt) is
tions. A generic system possesses a certain degree of imeperformed as follows: _ o _

mittency, so that, for instance, the expanding and contracting (i) We select several starting conditior§(0), x4(0), ...,
properties may strongly depend on the phase-space regioi(0) all located in thejth box of sizee®.

the trajectory is visiting. This calls for an averaging over the (i) We let evolve all theN>1 starting conditions up to a
initial condition x¢, weighted, say, by the natural invariant time t obtainingx}(t), x.(t),..., x\(t).

measure of the system (iii) We calculate
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18
pel(k,t) = NE 8(x(1),k)
i=1

with

SS
¢ O » D> OO0

K 1 ifxeA;
Xl = .
0 otherwise.

(iv) We compute the entropy qf¢i(k,t) defined as

01 2 3 4 5 6 7 8 9 10
S, == 2 pelk,blog pl(k,b). (14 this(P)
“ FIG. 1. S¥(t) as a function othkg(p) for the modified tent map
(v) We average this quantity on the coarse-grained invariof Eq. (16) with e=10"3 and different values op. Note that Eq.
ant distributionpe(j) obtained frompe(x) with the proce-  (10) should give the straight linthcg(p) for all values ofp.
dure of Eq.(9). Thus, we have

_ ey The numerical results are shown in Fig. 1. We get
S _21_: Ped(1)SJ.1)- (15) =102 and scale the time axes with the inversehg(p),
given by Eq.(18). Thus, if Eg.(10) holds, then we should
observe that all the curves, with differemt collapse on the
straight lineS<(t)=hxg(p)t. As one can see, the agreement is
good only forp=% (with no intermittency, while it becomes

A recent papef15] shows that the value ofg in the  worse and worse with a decreasipgThe main point is that
Manneville map[21] significantly differs from the value of the linear behavior ofs5(t) should hold, according to the
hcs These authors perform the analytical calculatior8@f  heuristic arguments of Reff16], till to a time given by
starting from only one particular condition, namely, the box
containing the poink=0, which, in the Manneville map, is _ ll 1 19
the point with the lowest local Lyapunov exponent. Since in tin = A o9 € (19
this map the value of the local Lyapunov exponent ranges
from very low valuedA(x) — 0 for x— 0] to values consid- corresponding, on the scaled time of Fig. 1, to the value
erably greater than 1, the authors correctly argue that thelog e=7. This is observed fop=% but for small values of
discrepancy is due to the variability Rfx). Nevertheless the p one has tha&(t) increases in time with a “wrong” slope
authors of[15] do not perform the final average over the (different fromhkg) and later it exhibits a rather long cross-
initial condition. In the following we see that the averaging over.
procedure(15) is not able to recover the condition of Eq.  The origin of this effect is in the intermittent behavior of
(10), neither in the Manneville map nor in a less-intermittentthe system. Indeed the realizatio84j,t) starting in the
map. Let us start with a simple case, i.e., the modified tentone[0,p] are spread on the whole intenjdl, 1] after few

A. Intermittent map

map given by[22] steps almost reaching the asymptotic value of -daghile
X/ if X, < the realizations starting, for example, near the unstable equi-
1= t ) t (16) librium point x=1/(2-p) takes several time steps to reach
(1-x)/(1-p) if p<x<1. the saturation, giving a dominant contribution to the rate of

increase ofS(t). In this way theS%(t) computed with Eq.
15) does not increase in time following the naive argument
yielding to Eqg.(10). The reason of the discontinuity Bf(1)
for p—>% is explained in the Appendix.
Ay==logp, A-=—-log(1-p). (17) Figure 2 shows other interesting properties of the behav-
The stationary distribution is constant between 0 and 1 and,or of Sy for p:O.l aqdsz.fl at varying the value af. As
consequently, we have one can see, in the slightly intermittent cgse0.4 the res-
caled curves collapse together confirming the assumption of
hes=pAs+(L-pA_=-plogp-(1-p)log(l-p), Eg. (10); while in the intermittent casp=0.1 the curves do
(18) not collapse and, only for very low values ef a linear
growth of S¥(t) is present. Let us stress the fact that, at vari-
assuming its maximum value fqn:% and decreasing its ance with the case shown in Fighg, in the intermittent case
value forp— 0. Note that this map presents an intermittent[Fig. 2(a)], the crossover regiméafter the linear one and
behavior, but not in a critical way, like in the Manneville before the saturationis very long and comparable to the
map, and the distribution of the length of the “laminar” zonesduration of the linear regime.

This map is the usual tent mapp't%, while for small values
of p one has an intermittent behavior characterized by tw
very different local Lyapunov exponents, hamely,

(the permanence in the zorp,1]) is simply exponential To connect our results to the ones of Rgf5] we also
without power-law tail. Nevertheless, we see that already irperform the same calculation for the Manneville map given
this system Eq(10) does not hold. by
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FIG. 2. S%(t)/S%(«) as a function of/ S%(«) for the modified tent
map of Eq.(16) with different values ofe. In (a) p=0.1 and in(b)
p=0.4.

X + k¢ if  x<d

el {(1 —x)(1-d) if d<x<1, (20

whered fulfills

d+kd=1.
We perform the numerical calculations in the ranjez
<2 andk< 1 where an invariant distribution exiqt4,15]. In

this case, even if the local Lyapunov expong(t) vanishes
for x=0, we select the parameters in order to hévéx))

=hyks>0 ({...) stands for the average over the invariant dis-

tribution). When z>2$ the distribution of the permanence
time 7 in the rangd0,d] has a power-law tail witH7) <o
while (7) diverges. The only difference from the tent-map
calculation is that the invariant distributigr,(x) is not con-

PHYSICAL REVIEW E 71, 016118(2005

S oooooooooot
ford
4t oooooo
°
9 3
2t S(t), z=1.6,k=0.2 o
02 hggt, z=1.6, k=0.2
O,

I o
1 0
o L I I 1 I

0 5 10 15 20 25 30 35

FIG. 3. S(t) as a function oft for the Manneville map of Eq.
(20) for z=1.8 andk=0.2. The value of the slope of the straight line
is hgs as numerically calculated for the same values of parameters.

if x<p

_Ixp
f(x)_{(l—x)/(l—p) if p<x<1, (&2

andr is an integer greater than 1. The map %prs a modi-
fied tent map, like in Sec. Il A, while the map fg is a
generalized Bernoulli shift. We chooge=0.3 andr=5 in
order to have two largely different uncoupled Lyapunov ex-
ponents, namely,=0.61 and\,=log 5=1.61. We use this
kind of coupling to avoid discontinuity at=0 or x=1.

We will see that in this system the two Lyapunov expo-
nents\, and\, have a role rather similar to that df and_
for the systen(16).

The coarse-grained Gibbs entropy of this 2D map is cal-
culated starting from a 2D cell of linear sizeand perform-
ing the average over the 2D coarse-grained invariant distri-
bution, which turns out to be almost flat in the slightly
coupled caser<1. We numerically check that even for the
maximum value usedr=0.1, the deviation from a flat equi-
librium distribution is negligible. We also numerically calcu-
lated the Lyapunov exponents in the coupled case; for the
small values otr used, we observe no relevant changes from
the uncoupled case. We set5x 1073 and study the behav-
ior of S¢(t) with different values ofr in such a way that we
can study the crossover behavior at varyimgThe results
are shown in Fig. 4.

As one can see, at very smadjl S¥(t) increases with a
slope equal to the Kolmogorov-Sinai entropys=N,+A\,
=-plogp-(1-p)log(l-p)+logr. After that the phase
space of the variablg saturates and the slope changes. The

stant, and, therefore, we have to compute it numerically. As

shown in Fig. 3, also in this case we observe a “wrong” slope

(lower thanhyg) of S(t) and a very long crossover range.

B. 2D map

Let us now discuss a system with two different time
scales. We choose the following 2D maps for the variable
andy;:

{Xt+1 =f(x) + o cod2m(x; +y)]mod 1 (21)

Yie1 = IYi + 0 cO§27(x + y) Jmod 1

with

1
10 1

SE

6=0.001
6=0.005
6=0.05

. cs=0.1
S x(t)"'S y(°°)

o]
L]
&
rs
v
v

N W e OO N®

= L
o

6 8 12

FIG. 4. S5(t) as a function of for the 2D map of Eq(21) with
different values ofo, e=5x 1073, p=0.3, andr=5.
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time of the change in the slope is the saturation time of the 7 Z S.0.8F
corresponding 1D systems, nameiy,~1/\log(1/¢) as in 61 N Ajﬁ;v‘v;fw
Eqg. (19. In the casesr< € the influence of the coupling is 5t Baneo™™"
almost negligible and the second slope is the same, as we al p=05 o
observe in the 1D case. In other words, as shown in the [ sl =g3§g .
figure, we haveSE(t)sz,(oc)+$(t), where S{(t) is the en- ‘,;;011 R
tropy calculated from the marginal probability density 27 Pty —
py(X,t)=[dyp(x,y,t). In a similar wayS{(t) is obtained from 1

0

py(yvt):fdxp(xvyvt)
When o= € the noise on the slowest variablés enough
to spread the distribution as fast as it happens for the variable
y so no change in slope is observed. FIG. 5. S4t) as a function ofhcg(p) for the discretized 1D map
Thus, we observe that for values ®f> €, rg corresponds  of Eq. (23) with different values o, e=1073, and 1/=3x 10°.
quite well to the value ohkgin a broad time interval while
for valueso < € this correspondence longs only for a very creases with a slope given by the Kolmogorov entrbgyof

short time. This is noteworthy because this map has pratig,o corresponding continuous svstem =f(x.). while for
cally the samég entropy at the different values of used P g ystam=f(x),

0 1 2 3 4 5 6 7 8 9 10
t hys(p)

[for 0=0 hgs=—plog(p)—(1-p)log(1-p)+log(r)=2.22 1

while for 0=0.1 we numerically obtaihgs=2.19], but with n=t,=- s log 7 (25
values ofo> e we haverg = hyg while for o< e the equiva-

lence is lost or longs for a very short time. the block entropy stops increasing, thus, revealing the peri-

It is interesting to compare Fig. 4 with Fig(a. In both  odic nature of the dynamics. We present the behavi@*(@f
cases the “naive” behavidre., S(t) - S5(0) =hxgt] may have in this system, varying the value pfin order to observe also
a very short duration, and there is a long crossover. Théhe effect of intermittency. As Fig. 5 shows, for the higher
origin of this crossover is due to a sort of “contaminationvalues ofp the coarse-grained Gibbs entropy increases as a
effect” of different times(in other words, different mecha- function of the scaled timéh(p) with a slope comparable
nismg involved. For the systerfil6) this is due to intermit- to 1, while it reaches the saturation values at a scaled time
tency (the system “feels’\, and\_) while for the 2D map it ~ given approximatively by

is due to the existence of different times that are relevant at 1 1
different spatial resolution scales. toq= — Iog(—) ~7.
In systems with many degrees of freedom the “contami- hks €

nation effect” can progluce rather impressive behaviors. Aqgte that, in spite of the fact that the KS entropy(@8) is

an example we can cite the case of fully developed turbugyictly zero, this behavior is practically the same as the con-
lence where, because of the existence of many different chai,,ous system, revealing one of the main problem of the use
acteristic times, the growth of the distance between two trags the coarse-grained Gibbs entropy to detggt Indeed the

jectories is a power I_aw in tir_ne instead of an exponentialy|qck entropyH<(n) feels that the system is periodic only for
(although the system is chaoti23]. n>t. but
pl

C. Discretized 1D map hcgtp = —log 7> —loge. (26)

We now discuss a class of dynamical system with zerdrhe last inequality follows from the physical condition we
hks the discretized maps also called deterministic automatase, i.e., that> # in order to have several states inside each
[24]. We study the discretize@ the phase-spageersion of  cell. The main point is that becauge> 7,
the 1D the map defined by the equation

: (23 KS

_ 7{]((”0
N1 =7
K is larger than the saturation timg,. Therefore, the coarse-
where 7 is the discretization parametéthe number of dis- grained leps' entropy saturates well before the system feels
cretized state is 1), || denotes the integer part afgk) isa (0 be periodic.

tent map
IV. CONCLUSIONS
f( ):{

_ L

t,= h log(1/7),

x/p if x<p _ . '
(1-X)/(1-p) fp<x<1i. (24) We have shown that, in spite of some foIhore_, there is a
rather loose relation between the Kolmogorov-Sinai entropy
Even if this system is the discretized version of a chaoticand the growth of the coarse-grain€@ibbs-like entropy.
map, the finiteness of the available states forces the dynansuch a claimed connection exists only in very special cases,
ics to be periodic. In Ref.24] it has been observed that the namely, systems with a unique characteristic time and very
block entropyH¢(n) defined in Eq(2) with e> 7 (i.e., sev- weak intermittency(i.e., small fluctuations of the local
eral discrete states in each ¢eibr small values ofn in- Lyapunov exponeft On the contrary, in more interesting
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(and closer to realitysystems, with multiple characteristic discontinuity let us compute the value 8f(1). If we start
times and/or nonnegligible intermittency, the relation be-from thejth cell we have
tweenhys andrg holds (if any) only for a very short time. .

The main reason for this is due to the asymptotic nature of pI(k,0) = &;.
hgs (as well as thes entropy, i.e., its relevance at very large
time intervals. On the contrary, the growth of the coarse-,
grained entropy only involves short time intervals, and, dur-
ing the early time evolution o(t) one has entanglement of
behaviors at different characteristic space scales.

This phenomenon is rather similar to that observed in the~ 2
spreading of passive tracers in closed baf#%. In such a € _1 , ,
case, if the characteristic length scale of the Eulerian veloci- Pk D)= 2Oz + dayed)
ties is not very small, compared with the size of the basinjeading toS*(1)=log 2 for eachj. If we havep - ¢ with
both the diffusion coefficient and the Lyapunov exponent dogz< 1, then the size of the phase-space region populated after
not give relevant information about the mechanism ofgne time step is essentially the same. Nevertheless, this time
spreading. the trajectory starting at the border of a cell does not always

Our loose-relation result refers to short time behavior. |ngo to another cell border. Therefore in the averagn']g proce-
the opposite limit Collet and Eckmarj6] find a result of  dure of Eq.(15) there will be some starting conditions giving
the same kind: in intermittent hyperbolic dynamical systemsapproximately a superposition of the cell borders after one
the decay rate of time correlations is never faster than what Bme Step(for examp|e| 0) and Consequenﬂy a value of
dictated by the smallest positive Lyapunov exporféimt, in  s¢(1) ~log 2, but also some starting conditiopgesulting in
the one-dimensional case, reducesg).

We stress again that the failure of the relation betwsen PEI(K, 1) = 58 g1+ 3 (g + S zje2)-
andr is due to the fact that the growth of the coarse-grained
entropy is not related to asymptotic propertié., long These terms give a contribution to the average greater than

times and small resolutionThis is particularly evident in logarithm 2 and lead tO the discontinuity of Fig. 1 when
deterministic discrete states systems that, although nonchg0ing fromp=3 to p# ;. Anyway this behavior is not im-
otic (i.e., with hys=0), show a behavior o8(t) very similar ~ portant for greater values of time, therefore, it does not in-
to that observed in genuine chaotic systemith hys#0).  fluence the behavior d&(t) for t>1.

From all that one can safely conclude, in intermittent sys- In order to check our numerical results we also compute
tems there exist different characteristic timesg., the in-  STt) from p(x,t) obtained by the Perron-Frobenius equation.
verse of Lyapunov exponent, the correlation time, ag"d In the case of the tent map, we use directly the expression of
with no simple relation among them. the formal evolution of(x,t), given by

p(x,t+1) =pp(px,t) + (1 -p)p[1 -x(1 -p),t],

implemented in a recursive algorithm on a computer pro-

gram. We fix
l/e if x e Ag
p(x,0) =

0 otherwise,

If p= 2 at time 1, then this cell will be spread over exactly
two cells and the trajectory starting at the border of a cell
will go exactly on the border of another cell, thus, if, for the
sake of simplicity,] <! s€ (i.e., if the cell is in the regionx

1), we obtain
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APPENDIX

We discuss here the discontinuity 81(1) for p#3 ob- et p(x,t) evolve, and then we comput&(t). The results
served in Fig. 1. Indeed fqu=3 we haveS<(1)=log 2 while  obtained with this method are in perfect agreement with
for p=%—§, with ¢<1, we haveSi(1)=0.85. Obviously those in Sec. Ill and confirm the presence of the dis-
S$7(0)=0 for all values ofp. To understand the reason of this continuity.
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